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Perturbation series for transition moments of anharmonic 
oscillators 
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Physics Department, University of Hull, Hull HU6 7RX, U K  

Received 23 October 1984, in final form 14 March 1985 

Abstract. The off-diagonal hypervirial theorems and a matrix product rule are applied to 
the perturbed one-dimensional harmonic oscillator in a new method of obtaining perturba- 
tion series for the off-diagonal elements (mixin). The present work gives the Rayleigh- 
Schrodinger series for (Olx/l) to eighth order for a quartic perturbation. 

1. Introduction 

The quantum mechanical hypervirial theorems were introduced by Hirschfelder (1960) 
in a generalisation of the classical hypervirial theorems arising from the Poisson bracket 
representation of the classical equations of motion. The time average of the Poisson 
bracket vanishes for a bound system. This corresponds to the vanishing of the expecta- 
tion value of the commutator in quantum mechanics. For a quantum mechanical 
system described by a Hamiltonian operator H, with energy eigenvectors In), a time- 
independent operator W = qupp yields diagonal hypervirial theorems when used in 
the relation 

(nl[H, Win) = 0. (1) 

Each a, p combination in W yields a dynamical relationship obeyed by the system. 
In a perturbation problem H is of the form H,+AV, where A is the perturbation 

parameter. With suitable choices of W, a recurrence relation may be produced from 
(1) to obtain perturbation series for expectation values of various powers of the position 
coordinate. Using these results, the Hellmann-Feynman theorem can then be employed 
to give an energy perturbation series. This procedure has been carried out by Swenson 
and Danforth ( 1972) for the perturbed one-dimensional harmonic oscillator, and by 
Killingbeck (1978) for the hydrogen atom with radial perturbation Ar. The method 
possesses the advantage over wave mechanical methods that the calculation of pertur- 
bed wavefunctions and the consequent integration over the space region considered 
is not required. Expectation values are treated as variables and are calculated directly 
as power series in A. 

The off-diagonal hypervirial theorems are derived by placing the commutator [ H ,  w] 
between the energy eigenvectors Im) and In) to give 

(ml[H, w l l n ) =  (E,,, -E,)(mlWln). (2) 
In a non-perturbative application, Banerjee (1977) has used (2) to obtain a linear 
recurrence relation between the transition moments of anharmonic oscillators, valid 
+ Address for correspondence: Department of Mathematics, University College of Swansea, Swansea 
SA2 8PP. UK. 
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for any polynomial potential. For even parity potentials the recurrence relation requires 
the provision of a certain minimum number of the lowest power moments in order to 
calculate the higher ones. 

The present work presents a new method of producing perturbation series for the 
off -diagonal matrix elements (m(x1 n) of the perturbed one-dimensional harmonic 
oscillator. A recurrence relation is derived from ( 2 )  relating the perturbation coefficients 
of transition moments between two arbitrary perturbed eigenstates. For the perturbed 
oscillator potential energy V = px' + Ax'" the recurrence relation can be analysed with 
an  appropriate algebra to determine the positions of vanishing elements in the matrix 
perturbation coefficients (MPCS) of x * ~ + ' ( A ) .  The remaining matrix elements are left 
undetermined by the algebra and their positions in the MPCS obey a definite structural 
law. A product rule is then constructed relating a diagonal element of a MPC of x2(A) 
to a sum involving off-diagonal elements of MPCS of x ( A ) .  The positions of the 
undetermined elements participating in this product rule are then given by the structural 
law, which sets finite limits to the sums over states. The product rule subsequently 
serves as the basis for the calculation of off-diagonal perturbation series. 

The production of diagonal perturbation series (which are needed to start off the 
off-diagonal calculations) presents an immediate problem. The range of the coupling 
constant A for which the series sum to 7 th  order satisfactorily converges is confined 
to low values, A << 1 .  This led Killingbeck (1981)  to devise a renormalisation method 
which, by regrouping the terms in the Hamiltonian operator, alters the rate of divergence 
of the perturbation coefficients and extends the useful range of A. The application of 
this method to the off-diagonal problem by the present author has converted off- 
diagonal series which are strongly divergent at relatively small A into renormalised 
series which give satisfactorily convergent results to a 7th-order approximation. 

To illustrate the off -diagonal calculation presented in this work, the procedure has 
been described to fourth order for a quartic perturbation, and the Rayleigh-Schrodinger 
series are given for (Olxll), (11x12) and (Olxl3) from an eighth-order calculation. 

It is emphasised that the essence of the calculation lies in the property that it 
simultaneously produces many ( m l x l n )  series. In the calculation for (Olxll) to eighth 
order a total of 365 perturbation coefficients are produced. As the calculation order 
is raised all the ( m l x l n )  are gradually produced. 

2. Hypervirial recurrence relation 

Consider the Hamiltonian operator 

H = -aD2+ V ( x ) .  ( 3 )  
If we place this Hamiltonian into ( 2 ) ,  first with W = x k  then with W = x k - ' D ,  the 
operator D can be eliminated from the two equations obtained. Substitution of the 
operator D2 from ( 3 )  into the result yields 

a 2 k ( k  - 1 ) (  k - 2 ) i k  - 3 ) ( m l ~ ~ - ~ I n ) +  2 a k ( k  - 1 ) ( E ,  + E,,)(mlxk-' ln)  

- 4 a k (  k - l ) ( m / x k - *  V l n )  - 2 a k ( m l x k - ' D V l n )  

+ ( E , - E , ) 2 ( m I x k l n ) = 0 .  

For the perturbed harmonic oscillator with potential energy 

V ( x )  = p x * +  Ax2" 



Transition moments of anharmonic oscillators 2209 

we postulate that the matrices x k  (with elements (mlx’ln)) and the eigenenergies E,,, 
can be expressed as perturbation series in A, thus 

D 

E,(A)= EiA’. 
i=O 

( 7 )  

The matrix coefficients 0: and the Ei clearly have state-dependent values. For the 
sake of brevity it will be useful to define E:,, and E,,, as 

E L  = ( E m  + En) E ,,, = ( E ,  - E, , ) .  

It then follows from ( 7 )  that there will be series expansions of the form 
m 

where the coefficients E :  and E ;  have a dependence on m and n. 

of A produces the relation 
Substituting ( 5 ) ,  ( 6 ) ,  (8) and (9) into ( 4 )  and equating coefficients of like powers 

a 2 k (  k - 1)(  k -2 ) (k  - 3 ) ~ ? k , - ~ + 2 a k ( k  - 1) E : Q f - 2  - 4 a p k 2 Q k ,  
I + J = y  

+ 1 E ; E ; Q ; - 4 a k ( k +  ~-1)Qk,T:‘”-”=0. 
r + s + u = y  

By separating out all Q of order y to the left side of (10) we arrive at the result 

a 2 k ( k  - 1)(  k -2) (k  -3)Qk,-4+2ak( k - 1)E iQk , -2+4ap[ (m - n)’- k*]Qk, 

= 4 a k (  k + Y - l)Qk,T:‘”-l) - 2 a k ( k - l )  
i+, = y- 1 

y - 1  

u = o  r + s = y - u  
- c  c E X Q t :  

having noted that the unperturbed energies E ,  are given by E,,, = ( a p ) ” * ( 2 m  + 1). 

with the anharmonic oscillator potential energy ( 5 ) .  

in (5) in the form 

Equation (11) is the hypervirial recurrence relation for the Q matrices associated 

To produce the recurrence relation for renormalised series we regroup the terms 

V(X) = Mx’+ A ( x 2 ”  - Rx’) ( s a )  

so that M = p + RA. The fixed constants of the problem considered are p and A so 
that R is varied to obtain the best series convergence. The effect this procedure has 
on the recurrence relation (11) is to change p into M and to add the term 4ak2RQk,- ,  
to the right-hand side. 

Our first task is to examine what information can be obtained from the recurrence 
relation (11). 
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3. Consequences of the recurrence relation 

Consider the power series ( 6 )  of the odd power matrices 
cs 

xZh+'(A)= Q Y + l A y ,  h = 0,1, . . . . 
y = O  

It is possible to show (Clarke 1984a) by analysing the recurrence relation (11) with 
an appropriate algebra, that matrix elements in Qyil vanish for states m, n which do 
not satisfy 

Im - n /  = 2 s +  1, s = O ,  1, . . . ,  h + y ( v - l )  (13) 

where h, y 3 0 ;  v 3 1 ; and 2 v  is the power of the perturbing potential energy. Those 
matrix elements with state numbers conforming to (13) are left undetermined by the 
algebra. If we assume that these undetermined elements are non-vanishing then the 
result (13) provides some justification within our perturbative approach for the trunca- 
tion hypothesis used in matrix methods, e.g. Li er a1 (1975). This hypothesis assumes 
that the transition moments of x ( A )  fall off rapidly as 1m - nl increases. We see from 
(13) at v = 2 that a new family of elements comes into play at each order y and the 
greater the difference between their state numbers lm - n J  then the greater is the order 
at which they first appear. We can see that for small A the x ( A )  elements will presumably 
decrease rapidly as 1m - nl increases. 

Only certain families of elements may be directly evaluated from the recurrence 
relation (11). These are given (Clarke 1984a) by the reduced recurrence relation 

~ 2 h + 1  = / . - ' [ ( 2 ~ + 1 ) ~ - ( 2 h +  1)2]-' 

valid for O c s s h - 1 :  y=O,  and for h + ( y - l ) ( v - 1 ) + 1 ~ s s b + y ( v - 1 ) :  y>O. 
Provision of initial zeroth-order moments (mi Q2"ln) permits the yth-order moment 
(mIQYcl ln )  to be determined. The results (13) and (14) are valid when the potential 
energy is expressed as 

Y 

V ( x )  = px2+A A,xZr. 
1 = 1  

This fact is important for conducting a renormalised series calculation. 
Finally, a third relation arises if we place k = 1 ( h  = 0) in the recurrence 

(1 1). This produces the ith-order equation 

(mlQtlm + 2s'+ 1) = A(mlQf!;;'Im+ 2s'+ 1) 

+ B  'f* 2 E ; E ; ( ~ / Q : J ~ + ~ ~ ' + I )  
u = o  I . + * = # - "  

having taken the (mlm +2s'+ 1) element. (Of course, additional terms arise in (15) 
when the potential (5b)  is used.) The constants are 

A =  ~ / p [ ( 2 ~ ' +  1)'- 11, B=- l /4c~p[(2~ '+1) ' -1] .  
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Providing S I  # 0 then A and B are defined and (15) can be used. Recourse to the 
structural result (13) for the Qt ( h  = 0) therefore gives the range of validity for s' in 
(15) as 

s ' = l , 2  , . . . ,  i(v-1), i > O .  

All that remains is to set up a product rule calculation to which (13), (14) and (15) 
will supply information. 

4. Product rule calculation of perturbation series for (mjxln)  

The product rule employed to find the elements of the Qt-the yth-order MPCS of 
x(A)-is based on knowledge of the perturbation series for the diagonal elements of 
x2(A). The matrices are related by the matrix product equation 

x 2 ( A )  = x(A)x(A) .  (16) 

We can make use of (6) to express x(A) and x2(A) as perturbation series of the form 

n 

X ( A ) =  2 Q ~ A ,  

x ' (A)=  Q ~ A ~ .  

1=0 

oc 

y=o  

Placing (17) and (18) in (16) and equating coefficients of like powers of A gives 

ot= c 0:o:. 
I i J ' Y  

Equation (19) relates matrix perturbation coefficients of x(A) and xZ(A). Each matrix 
product Q:Qj can be expressed as a sum over products of matrix elements. We are 
therefore interested only in the positions of the undetermined elements in the ith-order 
matrix in order to exclude the determined vanishing elements from the calculation. 
These positions are given by the choice h = 0 in the general structural equation (13) 
which then shows that only elements having states satisfying the condition 

1 m - n /  = 2s, + 1, s, = 0 , 1 , .  . . , i(v-1) 

are undetermined in Qt. Consequently, taking the ( m  I m )  element in (19) produces a 
sum over states (characterised by a sum over the integers s, = s,) for the term 

(mIOtlm@ (2s, + l ) ) ( m @  (2s, + 1)IQjlm). 
o=i,- 

Since one factor in each product must vanish when we transcend the range of s, or s, 
then the sum over states must have an upper limit equal to the lower value of i (  U - 1) 
andj (  v - 1)-the upper limits of s, and s,. The ( m  I m )  element of (19) therefore becomes 

(20) 
P 

(mlQ:Im)= I+J'y C S = o @ = + , -  C C ( m l ~ : I m @ ( 2 s + l ) ) ( m 0 ( 2 ~ + 1 ) 1 ~ : 1 m )  

where P = [i( v - l ) , j (  Y - I)]  min. 
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The substitution j = y - i finally gives 
Y P'  

so that P' = [ i (  v - l) ,  ( y  - i ) (  v -  l)]  min. 
We note from the limit P' that at i = y-the highest order-we have P' = 0 giving 

only one value of s in (21), s = 0. This means that only two yth-order elements occur, 
namely, (mi Qblm + 1) and (mlQtlm - 1). The symmetric nature of the Q matrices 
means that if the former is determinable at m = n then the latter is already evaluated 
at m = n + 1. We therefore focus on the element (mlQblm + 1). Since it is the highest 
term in the indices y, m, we make it the subject of the calculation (i.e. we set out to 
determine it in terms of the other elements in (21)). Each y, m combination therefore 
characterises one calculation using (21) to find (mlQilm + 1). 

The diagonal elements ( m ( Q t / m )  may be found from the diagonal hypervirial 
theorems used by Swenson and Danforth (1972). This leaves the question: is it possible 
to systematically determine all the elements ( m l Q f l m + 2 s +  1) in (21) for every order 
y and state m? To illustrate that this is possible we concentrate on the quartic 
perturbation problem-with v = 2 in P'-and make out a list of all the matrix elements 
generated by the sums in (21), for ascending orders y with arbitrary state m. This list 
is given in table 1 to fourth order ( y = 4).  The members of the list at each order y are 
determined by the permissible values of s in the coefficients Qt. We see from table 1 
that the elements at order y consist of the elements at  order ( y  - 1) accompanied by 
additional elements. The previously calculated ( y - 1)th-order elements are used in 
the yth-order calculations and are shown within the dotted region in table 1. The 

Table 1. Matrix elements ( m l Q f l m * ( 2 s +  1 ) )  generated at each order of the product-rule 
calculation for the Hamiltonian H = -aD2+ ,ux2+ Ax4. 

~~ 

Order of Order of 
perturbation perturbation 
coefficient Qt coefficient of ( m I Q,'I m * ( 2 s  + 1 )) 
in x2(A) in x(A) elements generated 
Y I s 

0 
1 

2 

3 

4 

0 
0 

1 

0 

1 

2 
0 

1 

2 
3 
0 
1 

2 
3 
4 

0 
0 

0 

, I  

0 

' 0 ,_.__ 

0 

1 0  , , _ _ _ _ _  
1 0  1 :  

1 0  1 , :  Q . ,_ . . . . . 
; ,o , :  ... 

0 
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problem therefore reduces to finding the additional elements at each order (undotted 
region). 

The additional elements consist of the highest-order elements-(m[ Qblm + 1) and  
(mi QbIm - l)-and calculable elements which we shall discuss shortly. We recall that 
if the subject of the calculation (mi Qbl m + 1) is determinable then (ml  Q\l m - 1) is 
known at  the next highest m. For each order y a calculation is made for (miQ\ lm + 1) 
at each m in ascending order from m = 0. The element (miQblm - 1) may then be 
taken from calculations at previous m and providing the above-mentioned calculable 
elements and  (m(Qllm) are given we can find (miQ\lm + 1). If these calculations are 
carried out at each y in ascending order from y = 0, with appropriate ranges of m, the 
lower-order calculations support the higher-order ones. We can then find (miQbl m + 1) 
for any y, m 3 0. 

The question that remains is: how are the calculable elements found? To answer 
this we make use of equations (14) and (15) of 0 3. 

Equation (14) at h = 0 will give the elements (mi Qt im + 2 s  + 1) for any order i > 0 
and state m 3 0 providing s satisfies the condition, 

( i  - l ) ( v -  I ) +  1 c s c i( v -  1). 

For a quartic perturbation ( v = 2 )  we have s =  i, the order of the element. These 
elements are shown with a full circle in table 1. 

Equation (15) provides the remaining elements for the calculation. For a quartic 
perturbation ( v  = 2) s’ must satisfy the condition 

s ’ =  1 , 2 , .  . . , i. 
We note that at order i, both (14) and  (15) are valid for s = s ‘ =  i ;  however, the 
calculation in terms of zeroth order elements with (14) is easier. The rth-order energy 
differences E ;  can be found from the diagonal hypervirial theorems and the uth-order 
elements (mlQ:lm+2s’+l),  having order u < i ,  can be taken from previous order 
calculations. This leaves the ( i  - 1)th-order element (mIQf!y-l)+llm +2s’+ 1) which is 
found by constructing a product rule. For example, for a quartic perturbation ( v  = 2) 
we require a product rule for (mlQ?-,lm+2s’+ 1). This involves the matrix product 
QhQtQf. where Q?-l arises from summing over the combinations of orders a, b, c 
satisfying 

a + b + c = i - 1 .  

Each QhQtQE must then involve a sum over states n, n’ for the term 
( m l Q ~ l n ) ( n l Q ~ l n ’ ) ( n ’ I Q ~ l m + 2 s f +  1). The ranges of these sums are taken from the 
structural result (13) at h = 0; v = 2; y = a, b, c. Since each element generated in these 
sums has order less than i, their values may be drawn from previous order calculations. 

The elements calculated with (15) at v = 2 are shown with a square in table 1. The 
calculation of the ( m l Q : \ m  - (2s + 1)) for (21) is superfluous since the symmetric nature 
of the Q matrices and the calculation with ascending values of m in (21) guarantees 
that the ( m (  Q!l m + 2s + 1) are sufficient. 

As an  aside, it is interesting to note that the ( m  1 n )  element of the commutator 
equation 

[ H ,  [ H ,  XI] = 2cu d V / d x  

also leads to (15) when the (mlxZhil ln)  and the energies E,,, are expressed as perturba- 
tion series. 
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5. Results 

For a general Ax2" perturbation a BASIC computer program has been produced which 
calculates renormalised perturbation series for any (mlxl n) to arbitrary order. 

With the selection (Y = p = 1 in (3) and ( 5 )  and for a quartic perturbation ( v  = 2), 
the energy perturbation coefficients required by the fourth-order (01x1 1) moment calcula- 
tion are given by Drummond (1981) and are shown in table 2. The energy coefficients 
can also be calculated with the microcomputer program of Killingbeck (1983). This 
program has been used to calculate the required (mi Q:lm) coefficients presented in 
table 3. We recall that each y, m combination corresponds to one ( m l Q J m )  coefficient 
and characterises one calculation for (mlQvlm + 1) with (21). 

The Rayleigh-Schrodinger series for (Olxjl) to eighth order is shown in table 4 
together with the series for (11x/2) and (01x13) to seventh order; the latter series emerge 
as some of the by-products of the (Olx/l) calculation. 

If we choose k = 1 in (6) and take the (01 1) element we have, to eighth order 

Selecting the value A = 0.02 and using the coefficients (OlQtll) in the first column of 
table 4 we can make up a table of the sum of the truncated series (22) to order i = y. 
These partial sums are given in table 5 .  

Table 2. Energy perturbation coefficients for various states m for the Hamiltonian H = 
- D 2 +  XI+ Ax4. 

Energy perturbation coefficient E ,  
at order y 

State 
m €0 € 1  E2 

0 1 .o 0.75 - 1.3 125 
1 3.0 3.75 
2 5.0 9.75 
3 7.0 18.75 -203.0625 
4 9.0 30.75 

Table 3. Diagonal elements of perturbation coefficient 0: of x2(A) for the Hamiltonian 
H - D 2 +  x'+ Ax4. 

0 0.5 -0.75 3.281 25 -20.8125 165.886 25 
1 1.5 -3.75 25.781 25 -244.6875 
2 2.5 -9.75 96.093 75 
3 3.5 -18.75 246.093 75 
4 4.5 -30.75 507.656 25 
5 5.5 -45.75 912.656 25 
6 6.5 -63.75 
7 7.5 -84.75 
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Table 4. Off-diagonal elements of perturbation coefficient Qk of x(A) for the Hamiltonian 
H = -D2+x2+Ax4.  

0.707 106 7812 

2.088 174 713 
-0.530 330 0859 

-12.504 189 06 
94.404 7 11 14 

-836.645 493 7 
8 396.630 153 

-93 535.925 02 
1143 303.25 

1 .o 
-1.5 
10.054 6875 

-94.570 3125 
1 065.576 508 

-13 566.953 29 
189 561.747 7 

-2857 992.657 

0 
0.216 506 3509 

-2.110936922 
23.749 731 83 

-300.360 698 4 
4 204.975 928 

-64 095.223 22 
1051 351.205 

Table 5. Sum of series (O/x/l) to eighth order for A =0.02 in the Hamiltonian H = 
- D2 + X’ -+ Ax4. 

Order of truncation 
of series, y 

Value of sum (O/xll) 
to order y 

0.707 106 7812 
0.696 500 1795 
0.697 335 4494 
0.697 235 4158 
0.697 250 5206 
0.697 247 8433 
0.697 248 3807 
0.697 248 2610 
0.697 248 2903 

G P  extrapolation 0.697 248 2845 

Replacing the seventh-order term in (22) by a geometrical progression term 

-A7(OlQ$1) 
(1 - A(OI QAll)/(Ol 0:i 1)) 

extrapolates the series (22) to infinite order. This result is also given in table 5. 

result for (Olxll) for the Hamiltonian 
An upper bound variational principle has been used (Clarke 1984b) to obtain the 

H = -D2 + X’ + 0 . 0 2 ~ ~ .  

This result is 

(Olxll) = 0.697 248 2852 

agreeing with the GP result of table 5 to nine decimal places. 
Two interesting points stand out from the results of tables 4 and 5. 
(a) The series produced are alternating series and thus show the typical feature of 

the diagonal perturbation series arising from perturbed oscillator problems. 
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(b)  Successive values of the sums for (01x11) in table 5 provide an upper limit and 
a lower limit of the 'true' result. This is also a typical feature of diagonal perturbation 
series for perturbed oscillator problems. 

The usefulness of the renormalised series method can be best illustrated by selecting 
a strong coupling, A = 1, for the Hamiltonian H = - D 2 +  x z +  Ax4. Table 6 shows the 
sum of the untreated Rayleigh-Schrodinger series ( R  = 0) for (01x1 1) alongside the sum 
of the renormalised series (with R =3.3). Compared with the variational result for 
this problem (Clarke 1984b) which gives 

(01x1 1) = 0.552 565 9594 

the renormalised sum gives agreement to five decimal places. In contrast, the sum of 
the untreated series is strongly diverging and yields no useful result. 

The algorithm presented in this work has the disadvantage that the number of 
operations required to calculate the products (mi @!';;'I m + 2s + 1) in (15) rapidly 
escalate with the order i and the perturbation potential power 2v due to a calculation 
of sums over products of x(A) elements. This has a noticeable effect on the running 
time of the program. It is conceivable that the introduction of off-diagonal even power 
moments into this calculation could considerably reduce the number of operations. 

Table 6.  Sum of series (O]xll) to eighth order for A = 1 in the Hamiltonian H = 
- D 2 + x Z + h x 4  with R = O a n d  R = 3 . 3 .  

Order of truncation 
of series, y R = O  R = 3.3 

G P  extrapolation 

0.707 106 7812 
0.176 776 6953 
2.264 951 409 

-10.239 237 65 
84.165 473 5 

-752.480 020 2 
7 644.150 133 

-85 891.774 88 
1057 411.475 

0.491 041 1501 
0.543 950 0213 
0.551 907 1063 
0.552 625 1583 
0.552 599 6847 
0.552 570 0737 
0.522 568 4942 
0.552 565 3873 
0.552 566 9939 

0.552 566 4463 
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